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Abstract

Recently there has been much interest in scaling water flow and species transport at the
continuum level to the watershed. A particularly simple and, therefore, appealing approach is
based on the water mass balance at the hillslope scale. Such models require parameterization
of closure relations (flux–storage relations) based on field data. In several recent studies,
this data was instead generated by steady-state numerical simulations of the hillslope. In
this work we focus specifically on closure relations for hillslope water balance models as in
previous work, but we use transient numerical solutions of continuum-scale models of the
subdomain to generate the data. Our goal is to study the effects of non-equilibrium behavior
on time-averaged flux–storage relationships for the hillslope. We show that for simulated
hillslopes, the flux–storage relations are multivalued for a wide range of time scales, discuss
how this situation arises, and provide some alternative parameterizations of the flux–storage
relations.

1. Introduction

Continuum mechanical models of water flow form the basis of the standard physical de-
scription of watershed hydrology. In principle, at least, the physical, mathematical, and
computational components of a continuum scale model of large catchments and watershed
have been available for three decades [20]. In practice, general continuum models have not
been capable of making accurate predictions for systems at the scale of watersheds [3]. Lim-
itations of the continuum modeling approach include theoretical difficulties in consistently
formulating and closing continuum models for all significant flow processes, mathematical
and computational difficulties in solving the resulting three-dimensional partial differential
equations, and perhaps most importantly difficulty obtaining accurate model parameters at
an appropriate scale.

Our focus in this work is on the simplified representation of hillslope subsurface flow for the
purposes of watershed modeling. As accurate continuum models of variably saturated flow
at the scale of hillslopes are computationally demanding and require extensive characteri-
zation of the subsurface, researchers have pursued several alternative strategies to modeling
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hillslopes. One approach is to use approximate or exact analytical solutions of continuum
models for the hillslope based on simplifying assumptions such as soil homogeneity or sim-
plified geometry [39]. Parameter estimation can be used to fit such models to real hillslopes
where the physical parameters in the model are then interpreted as effective parameters. A
yet simpler approach is to parameterize integral mass balance equations for a hillslope region
directly, based on physical data or numerical simulations [17, 18, 15, 31, 33].

We will review some of the predominant watershed modeling approaches in more detail
in section 2 to provide a context for our work on hillslope models. As a broad range of
techniques have been applied to the watershed modeling problem, we direct the interested
reader to several recent journal issues devoted to modeling issues at the watershed scale
[4, 41].

Briefly stated, our objective in this work is to study the effect of system transience on
hillslope water balance models. In particular, their effect on the flux–storage relations that
such models require. A logical approach for an initial study is to use detailed numerical
simulations of idealized hillslopes, in which case the data for the water-balance flux–storage
relations is easily obtainable [15].

In section 3 we present our derivation of the hillslope water balance model, which combines
ideas from [15] and [31]. In section 4 we present our model of the hillslope based on macro-
scopic continuum equations and incorporating the geometry of the hillslope and nonlinear
submodels of unsaturated flow processes. We study the behavior of this continuum model to
guide the parameterization of the exchange terms required for closure of the hillslope model.
There are natural limitations to using continuum models to obtain closure relations for the
water balance models, and there are many open questions about how to account properly
for capillary forces and heterogeneous soil properties at an appropriate scale. Nevertheless,
the continuum approach is capable of approximating the dynamics of simple systems and
should provide a useful benchmark and starting point for watershed scale models. Finally in
section 5 we present the resulting flux–storage relationships for the hillslope water balance
model based on fully transient macroscale data.

In summary, our objectives are

(1) to construct a simulator for a single hillslope based on macroscale continuum models
of subsurface flow,

(2) to obtain flux–storage relations for the hillslope using data from the continuum model,
and

(3) to explore the feasibility of constructing a low-dimensional model from these relations.

2. Background

The long term objective of watershed-scale hydrological modeling is to predict the response
of watersheds to input of precipitation from the atmosphere, extraction of moisture via
evapotranspiration and discharge via regional groundwater flow and channel/overland flow.
There are a number of different modeling approaches. First, one could draw on the large
body of work on continuum models for subsurface and surface fluid flow and transport
models to obtain a coupled, spatially distributed continuum model for the watershed system.
This approach was outlined and implemented as far back as 1969 [20]. Second, one could
formulate a finite-dimensional model of the watershed using various techniques to yield a
model appropriate for a significantly larger scale (possibly in time and space) to yield a
description of the averaged water balance [17]. We have in mind in the latter case simple
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water balance models as well as complex linkages of analytical solutions of the continuum
equations and other approximations [2]. Over the last decades widely used models have
evolved as some mixture of both approaches, but we nevertheless divide recent and historical
approaches into two categories: continuum models and process models.

The continuum modeling approach for watersheds is based on coupling three dimensional
continuum model equations governing all relevant processes participating in watershed hy-
drodynamics. Thus, at a minimum models of flow in porous media must be coupled to open
channel flow and boundary conditions reflecting evapotranspiration and precipitation. This
approach was formulated in [20], though given computational and mathematical limitations
at the time the subsurface sub-models were one- and two-dimensional approximations to the
full three-dimensional system. Advances in computing power and numerical analysis have
led to many recent attempts at modeling catchments and hillslopes using three-dimensional
subsurface flow models most notably [29, 9, 27]. These more recent models address some of
the shortcomings of continuum models cited by [20] by incorporating digital elevation data
for defining the spatial domain, and employing models of canopy interception, evapotranspi-
ration, and soil heterogeneity.

In spite of recent advancements in continuum modeling of the various watershed flow pro-
cesses, several of the shortcomings cited in [20] and in more recent critiques of watershed
modeling [5, 7, 8, 3, 30] remain. We break down these shortcomings into two groups: 1)
the inability to determine the physical parameters of the models at the continuum scale for
the entire watershed from either in situ measurements or parameter estimation, assuming
we have correct physical model of the processes, and 2) inability to characterize all the rel-
evant processes with a rigorous physical model. Both barriers to progress are rooted in the
variability of the domain and boundary conditions, and both may yield partially to contin-
ued developments in modeling and measurement. On the other hand, severe limitations on
modeling predictions due to the propagation of uncertainty may be a fundamental limita-
tion for continuum modeling at this scale. Given that in many applications finely detailed
knowledge of the hydrodynamics is not even required of the models, many researchers have
pursued simplifications of the full three-dimensional continuum approach.

Quasi-three-dimensional models, where one or two dimensions have been integrated to
yield a simplified continuum model, are widely used for describing saturated and unsaturated
flow in porous media [10, 11]. A number of other model simplifications still strongly tied
to the continuum approach, including an array of upscaling approaches such as volume
averaging and homogenization, will not be discussed further here. The simplifications that
we have termed process-based models make a more complete break with continuum models
and yield directly a model whose solution is itself finite dimensional. The most widely used
example of such models is TOPMODEL [2], which discretizes the watershed based on a
topographic similarity index related to the surface slope and drainage area. TOPMODEL
makes use of analytical solutions of continuum equations to piece together a description for
each relevant process.

A number of other process-based models have appeared over the last fifteen years [17, 18,
38, 23, 44, 43, 12, 13, 24, 25, 26]. Agreement between process-based models, field data, and
continuum models has been the subject of a several studies [40, 37, 36, 21]. The results of
these comparisons have been mixed. However, given that the much simpler process-based
models are quite good at predicting at least a subset of the dynamics recorded in the field and
simulated by detailed continuum models, improving process-based models might be a worthy



4

Figure 1. A watershed partitioned into 3 hillslopes. Streams are shown in
blue (solid lines), drainage divides in red (dotted lines), and the watershed
boundary in black (dashed lines).

avenue of research. Significant progress has been made on analytical approximations to
continuum-based subsurface flow models with the express purpose of incorporating dominant
topographic effects [39] into process models.

Due to the widespread use of process-based models and the realistic dynamics produced by
continuum models, some recent research has focused on using continuum models to improve
process models. Duffy and colleagues studied equilibrium solutions of a continuum model of
unsaturated flow in a simplified hillslope [15, 16, 6] in order to extract a simplified model of a
single hillslope for both flow and species transport. Numerical solutions of continuum equa-
tions on hillslopes have also been used to study the dependence of saturated area formation
on topographic factors, soil properties, and rainfall intensity [28].

A comprehensive watershed modeling framework, was presented in [31, 33] and applied
in [32, 34]. This formal framework for finite dimensional models of watersheds could con-
ceivably unite many of the useful features of process models into a more rigorous physical
and mathematical theory based on volume and time averaging as well as thermodynamically
constrained closure of the balance equations. Our approach will take the time-averaging
approach used in the framework and examples presented in [31, 33, 32] to derive models
quite similar to the water balance models in [15, 16, 6].

3. Hillslope Water Balance

To formulate watershed models based on integrated continuum scale quantities we must
specify an integration volume. In this work the integration volume is a single hillslope, which
is a subdomain of a watershed bounded by a stream reach, the land surface, and a set of
drainage divides. Any watershed can be decomposed into hillslopes as follows: A watershed
has an associated stream network consisting of all streams in the watershed as shown for
a simple watershed composed of three hillslopes in figure 1. The stream network can be
decomposed into segments (channel reaches). Each channel reach has an associated drainage
area determined by the topography, and each drainage area can itself be decomposed into a
surface (overland) and subsurface flow subdomains. Thus the organization inherent in the
watershed furnishes a decomposition of the watershed into channel reaches, subsurface, and
overland flow [31].
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In this work we focus simply on the hillslope water balance, in particular, on the flow of
water out of the hillslope as either exfiltration to the land surface or base flow to the stream
reach. We will, however, make strong limiting assumptions about the channel reach and
land surface bounding the hillslope in order to constrain the scope of this work to subsurface
processes as was done in [15]. These assumptions are as follows

(1) The water level in the channel is constant.
(2) The water level in the overland flow region is negligible.
(3) The exchange of water between the atmosphere and the unsaturated portion of the

surface is determined by the precipitation rate.
(4) The exchange of water between the subsurface subdomain and neighboring subdo-

mains is negligible.

Thus we will not maintain the capability to simulate any feedback to the subsurface due to
significant surface ponding or water level fluctuations in the channel, nor will we be able to
simulate so-called infiltration excess overland flow or regional groundwater flow. While the
assumptions are likely valid for some hillslopes, such as a steep hillslope bordering a large
channel reach, these assumptions are only invoked to allow us to focus on the subsurface
dynamics and could be relaxed if the continuum scale model described in the next section
was coupled to continuum models for open channel and overland flow. In the context of
macroscale continuum models of the subsurface our hillslope is bounded by a low permeability
material except where the subdomain intersects the channel reach and the land surface.

3.1. Integration in Time. Following [31] we introduce a characteristic time scale ∆t. The
hillslope water balance we consider will be a time-integrated mass balance calculated in terms
of continuum variables over a hillslope with volume, Vs, and time interval T = [t−∆t, t+∆t]
of length T = 2∆t. This approach is different from that used in [15] where only steady-state
solutions of the underlying continuum model were considered, and allows us to investigate
the effects of system transience on our ability to generate unique low order flux–storage
relations.

3.2. Mass Conservation Equations. Continuum scale quantities for water in the subsur-
face are density ρ̂, saturation Ŝ, and porosity ε̂ whereˆdenotes a macroscale quantity. The
time-averaged water mass in the hillslope is then

(1) M =
1

T

∫

T

∫

Vs

ε̂Ŝρ̂dVdτ

where Vs is the subsurface domain of the hillslope. We now factor M into physically relevant
quantities. First we define the hillslope volume, porosity, and saturation

V =
1

T

∫

T

∫

Vs

dVdτ(2)

ε =
1

TV

∫

T

∫

Vs

ε̂dVdτ(3)

S =
1

TV ε

∫

T

∫

Vs

ε̂ŜdVdτ(4)
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Note that with this definition S = 1 if and only if Ŝ = 1 throughout the entire hillslope.
The hillslope water density is

(5) ρ =
1

TV εS

∫

T

∫

Vs

ε̂Ŝρ̂dVdτ

Thus we have finally

(6) M = ρSεV =
1

T

∫

T

∫

Vs

ε̂Ŝρ̂dVdτ

Note that if ε̂ is constant in time and ρ̂ is constant in time and space then ε and ρ = ρ̂ are
both constants. That is, if the medium and water are assumed to be incompressible then the
analogous assumptions hold for the hillslope. We will derive mass conservation on a mass
per unit volume basis so we define

(7) m = ρSε

If there are no internal sources of mass in the subdomain then

(8)
d

dt

∫

Vs

ε̂ρ̂ŜdV +

∫

As

n̂ · ε̂ρ̂Ŝv̂dA = 0

where As is the boundary of Vs, n̂ is the unit outward normal on As, and v̂ is the macroscopic
velocity of the water phase (i.e. the filtration velocity or Darcy velocity). Taking the time
average and dividing by the subsurface volume V

(9)
1

TV

∫

T

d

dt

∫

Vs

m̂dVdτ +
1

TV

∫

T

∫

As

n̂ · m̂v̂dAdτ = 0

We can interchange differentiation and integration to obtain

(10)
1

TV

d

dt

∫

T

∫

Vs

m̂dVdτ +
1

TV

∫

T

∫

As

n̂ · m̂v̂dAdτ = 0

or simply

(11)
∂m

∂t
= eA

Using the variables and simplifying assumptions above we partition the exchange term eA

into terms from the subsurface region (s) into the overland flow (o), channel reach (r), and
atmospheric (a) bounding regions

(12)
∂(ρSε)

∂t
= eso + esr + esa

The simple hillslope with the exchange terms labeled is shown in figure 2. We have formulated
a hillslope equation for mass conservation, which now needs to be closed by finding additional
equations describing the exchange terms. If ρ and ε are constant, we need only find a relation
between the fluxes e and the storage S. Our closure approach will be to generate data using
macroscale numerical simulations. We next describe the macroscale model.
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Figure 2. 2D Hillslope. The region is divided into stream reach (Vr) and
subsurface (Vs) subdomains. The water table divides Vs roughly in half, and
the fluxes out of each boundary segment are labeled. For our sign convention,
fluxes out of the domain are negative.
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4. Continuum Modeling Approach

We will follow the standard macroscale continuum approach for modeling flow in the
subsurface [1]. The application of continuum models of the subsurface to hillslope and
watershed systems was apparently first outlined in [20]. Notable recent efforts are described
in [42, 7, 29].

4.1. Assumptions. We use the following assumptions, which are consistent with those given
above, in formulating the continuum model equations

(1) The geometry and pressure distribution of the channel is constant, in particular we
assume a static equilibrium pressure distribution.

(2) The water level in the overland flow subdomain is negligible and constant, in partic-
ular the pressure is atmospheric for the thin sheet of overland flow.

(3) The exchange of water between the atmosphere and the unsaturated surface of the
hillslope is determined by atmospheric conditions.

(4) The hillslope is symmetric about a long channel reach. We will consider a 2D slice
of hillslope by symmetry.

(5) Air in the subsurface is at constant atmospheric pressure and infinitely mobile.

4.2. Boundary and Initial Conditions. The assumptions above allow us to ignore simu-
lating overland flow and channel flow and to simulate the hillslope using Richards’ equation
[35]. The effects of the channel and overland flow subdomain enter only through the bound-
ary conditions that we use for Richards’ equation. The boundary conditions are

Asr −− p = ρg(ztop − z)(13)

Aso −− v · n̂ = max(k · p − qp,−qp)(14)

As∂V −− v · n̂ = 0(15)

where ztop is the depth of the channel reach, qp is the precipitation rate and k is a parameter
representing surface conductivity (10m/d in this work). The initial conditions were static
equilibrium conditions corresponding to qp = 0. We use a mass conservative formulation
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Table 1. Homogeneous Hillslope Parameters. These values correspond to a
sandy sooil.

ω 3.010 × 10−1

Sr 2.799 × 10−2

Ks (m/day) 5.040 × 100

α (m−1) 5.470 × 100

n 4.264 × 100

ρ0 (kg/m3) 9.982 × 102

β (m · day2 / kg) 6.564 × 10−20

of Richards’ equation and numerical methods that are described in [22] along with closure
relations of Mualem and Van Genuchten. The mass balance and closure relations are given
by

∂ρωS

∂t
+ ∇ · (ρv) = 0(16)

v = −K (∇p − ρg)(17)

ρ = ρ0e
βp(18)

S = Se(1 − Sr) + Sr(19)

Se = [1 + (α max(−p, 0)n]−m(20)

K = Ks

√

Se

[

1 − (1 − S1/m
e )m

]2

(21)

where ρ0, β, ω, g, Ks, Sr, α, n and m = 1 − 1/n are constants.

4.3. Hillslope Simulator. For this work the hillslope domain Vs is a 10m × 100m rect-
angular region with the long side tilted at an angle π/4 with the horizontal. The channel
reach boundary is applied at the left hand side so that ztop = 10 sin π/4. The fluid and soil
parameters, which correspond to a homogeneous sand, are given in table 1. For complete-
ness we also tested slopes of π/5 and π/6, correlated random fields for the soil parameters
based on the Miller-similar approach with a variance of 1.0, and a block heterogeneous slope
described in detail in [19]. Since the features we describe in what follows are apparent in the
simple homogeneous slope described above and across the range of hillslopes we studied, we
will henceforth deal only with the simple homogeneous slope with slope π/4.

5. Watershed-Scale Closure Relations

The simplest approach to closing the equation for the subsurface would be to assume a
constant watershed-scale density and porosity and then determine the exchange terms as
functions of the watershed-scale saturation. For instance, given suitably defined watershed
scale pressure p we might assume that a “watershed-scale Darcy’s law” holds [33] and that
furthermore p can be determined from S. Since the pressure in the channel reach is constant
this would yield the parameterization

(22) esr = esr(S)

In order to test the hypothesis that esr = esr(S) for our simple system we ran a series
of simulations to equilibrium starting from both fully saturated and fully dry (equilibrium
for P=0.0) initial conditions for precipitation rates P = 0.0, 0.05, 0.1, ..., 1.0 (m/day). We
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Figure 3. esr vs. S for a watershed time scale of T = 3.2 days, θ = π/4,
homogeneous slope. Equilibrium values are denoted by ∗. Each line represents
drainage and infiltration to equilibrium under constant precipitation.
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collected the spatially integrated fluxes esr and eso as well as watershed scale saturation S at
0.1 day increments for 100 days, which was approximately enough time for the hillslope to
reach equilibrium with the precipitation from both sets of initial conditions. To obtain the
watershed-scale variables we approximated time integrals of these quantities for several time
scales, T = 0.1, 0.2, 0.4, . . . , 102.4 days, using the midpoint rule. Note that equilibrium values
are not affected by the temporal upscaling since the system is assumed to be at equilibrium for
t > 100 days. That is, the equilibrium state dominates the time-averaging for T large enough.
In order to preserve this property in our discrete integral approximations it is necessary to
add sufficiently many copies of the equilibrium value (T days worth of equilibrium values)
of each variable to the 100 day sequence. A plot of esr versus S is given in figure 3 for
a watershed time scale of T = 3.2 days. The result is that esr cannot be parameterized
simply as a function of the watershed saturation since esr(S) is multivalued. If we were to
use only equilibrium data (an asterisk denotes the equilibrium value of esr in figure 3), our
data reproduces the result in [15] where the exchange term was parameterized as a low order
polynomial of the saturated storage. Furthermore, it was noted in [15] that for moderate
storage the equilibrium flux to the channel reach is roughly linear in the saturated storage,
and our results demonstrate the same behavior if we partition the hillslope storage S into
unsaturated, Su, and saturated, Ss, storage as in [15]. In our model a low order polynomial
in the hillslope saturation S would likely suffice for a moderate range of precipitation rates.
Regardless of whether the hillslope is modeled as a single-state or two-state model, however,
the flux terms remain multivalued. In the latter case the (Su, Ss, esr) data form a multivalued
surface (a surface that overturns). As should be clear from the fact that the equilibrium
states dominate the time integration for large enough time scales, increasing the watershed
time-scale T tends to collapse the multivalued flux functions onto the equilibrium curve.
The source of the non-uniqueness above in fluxes with respect to hillslope storage is that
disturbances in pressure propagate with infinite speed due to the non-degenerate parabolic
form of the governing equations (Richards’ equation), and,therefore, for any given watershed
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Figure 4. esr vs. (S, P ) for T = 3.2 days. The height of the surface gives flow
into the subsurface from the stream. The equilibrium contour is superimposed
in blue. The surface is single valued for all (S, P ).
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Figure 5. eso + esa vs. (S, P ) for T = 3.2 days. The height of the surface
gives flow into the subsurface from the surface, including both atmospheric
fluxes into the domain and exfiltration from the saturated subsurface. The
equilibrium contour is superimposed in blue.
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scale saturation S (or likewise given values of Ss and Su) infinitely many values of the fluxes
at the r and o boundaries can be generated simply by varying the atmospheric flux esa.

One route to parameterizing esr is then to add another dependency that reflects the
boundary conditions. Figure 4 plots the same data versus both S and the precipitation rate
P , which shows a single valued surface for esr. Figure 5 gives the total flux at the hillslope
surface as a function of (S, P ) as well.
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Figure 6. esr vs. (S, P ) for T = 3.2 days . The baseflow driven by the
dynamic precipitation time series is shown in purple.The fluxes often do not
lie on the surface, particularly during drainage.
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5.1. Realistic Atmospheric Forcing. The data set for figures 3, 4, and 5 consists of
monotonic drainage and wetting experiments, and a more realistic case would be relatively
short precipitation events interspersed with long drying periods. To this end we obtained
a year of precipitation data from a site in North Carolina consisting of 15 minute cu-
mulative precipitation measurements (Station: Clinton 2 NE, COOP: 311881, year 1999,
http://www.ncdc.noaa.gov). If we use this data to drive the hillslope then the flux becomes
significantly more complicated. We plot the values from the variable precipitation run as the
purple trajectory superimposed on the the previous data in figure 6 and 7. The exchange
term is yet again multivalued for both the simple storage parameterization as well as the
more complex parameterization of flux with respect to (S, P ). Either approach would be
biased under some conditions toward more base flow than actually occurs. The amount
of over-prediction relaxes to zero over time. Choosing larger watershed time scales damps
some of this behavior, but even for the largest time scale in this study (T = 102.5) days the
flux–storage behavior is still quite complex (figure 8). More importantly, the time-integrated
flux–storage data for the hillslope under dynamic forcing does not collapse onto the equilib-
rium curve. In other words, the average state of the dynamically forced hillslope is not an
equilibrium state, which is well known (c.f. [14]).

5.2. Watershed Model Closure and Simulations. To eliminate as many sources of error
as possible we simply used piecewise bilinear splines to generate closure relations from the
flux–(S, P ) surface data. For simplicity we lumped the surface fluxes eso and esa into a
single term, ēso = esr + esa (figure 5). Lastly, to compensate for the fact, discussed in the
previous section, that the dynamically forced hillslope drains more slowly than the numerical
experiments used to generate the flux–storage data, we shifted the input to the bilinear spline
for esr by a constant, S∗. In summary, the watershed-scale model for the simple hillslope is

(23)
dS

dt
= esr(S − S∗) + ēso(S)
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Figure 7. esr vs. (S) for T = 3.2 days; The surface driven by the dynamic
precipitation time series is shown in purple. Over time, the base flow appears
to relax to the trajectory corresponding to zero precipitation.
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Figure 8. esr vs. (S) for T = 102.5 days; The response driven by the dynamic
precipitation time series is shown in blue. For large time scales the dynamic
data moves away from the zero precipitation trajectory.
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For this work we simply set S∗ = mean(S̃ − S) where S̃ is the output of the model with
S∗ = 0, and S is the data generated by the continuum model. We solved the ordinary
differential equation above using the MATLAB routine ode23 with a maximum time step of
min(T/2, 1) days. The output of the model and the data generated by the continuum model
are presented for two time-scales, T = 0.1 and T = 6.4 days, in figures 9 and 10. In table 2
we present a measure of error, ‖S†(t)−S(t)‖∞, where S† is the output of the watershed-scale
model as well as the parameter S∗.
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Figure 9. Model comparison, T = 0.1 days. The over-prediction of base flow
is particularly apparent after large precipitation events.
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Figure 10. Model comparison, T = 6.4 days. The time averaging damps out
small errors but has no significant effect on errors due to large precipitation
events and long dry periods.
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Table 2. Watershed-scale model errors and coefficient,S∗

T 0.1 0.2 0.4 0.8 1.6 3.2
‖S† − S‖inf 0.0474 0.0469 0.0461 0.0448 0.0409 0.0325

S∗ 0.0146 0.0146 0.0146 0.0145 0.0143 0.0138

T 6.4 12.8 25.6 51.2 102.4
‖S† − S‖inf 0.0174 0.0173 0.0240 0.0231 0.0285

S∗ 0.0137 0.0150 0.0246 0.0333 0.0410
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6. Discussion

In response to a change in forcing conditions, two processes occur in the subsurface 1) the
redistribution of moisture and 2) the propagation of pressure disturbances. The former is
associated with a very slow time scale–hours to months (depending on soil properties, initial
and boundary conditions), while the latter occurs nearly instantaneously. As modeled by
Richards’ equation, the hillslope boundary fluxes are strongly dependent on the pressure
gradient and the moisture distribution due to the highly nonlinear form of the macroscale
closure relations. The fast time scale of pressure signals produces a kind of non-locality or
rate-dependence in the behavior of the watershed-scale system; the behavior of the subsurface
as a buffer in the hydrology of the watershed depends not only on the water stored in the
subsurface but also on the rate at which water is being supplied to the subsurface since
that rate affects the pressure gradient across the hillslope. The rate-dependent effect can be
incorporated into the water balance model by parameterizing the fluxes as functions of both
S and P . The slow (and variable) time scale of moisture redistribution produces a lag or
memory effect that cannot be fully quantified with the simple approaches we investigated.
This effect is particularly apparent under drying conditions.

7. Conclusions

We investigated several approaches to parameterizing flux–storage closure relations for a
time-averaged, integrated hillslope water balance. The approaches are not able to reproduce
all of the complex dynamics of a simulated hillslope driven by a year long sequence of
natural precipitation. The complex dynamics for the simulated hillslope derive from the
nonlinear parabolic form of the governing equations at the continuum scale. While some
dynamic effects related to variable precipitation are incorporated, those particularly related
to the slow redistribution of moisture within the hillslope are not. The time-averaging over
large time scales may be useful in recovering some accuracy if only long term averages are
required of integrated hillslope model. The hillslope simulator in this work was quite simple.
Phenomena in natural hillslopes such as hysteresis, heterogeneity, macropores, and fractures,
could conceivably dampen or exacerbate some of the effects we noted. Further work is needed
in constructing more complex continuum models of the hillslopes as well as in formulating
more rigorous upscaling techniques for this problem.
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